

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

Evaluation Technique Européenne

ETA-07/0211 du 19 Mai 2016

Traduction française par fischer – Document original en allemand

Partie générale

Organisme d'évaluation technique ayant délivré l'évaluation technique européenne :

Dénomination commerciale du produit

Famille à laquelle appartient le produit

Fabricant

Usine de fabrication

Cette évaluation technique européenne comprend

Cette évaluation technique européenne est délivrée conformément au règlement (UE) n°305/2011 sur la base du

Deutsches Institut für Bautechnik

Goujon d'ancrage fischer FBN II, FBN II A4

Cheville à expansion par vissage à couple contrôlé dans les dimensions M6, M8, M10, M12, M16 et M20 pour utilisation dans le béton non fissuré

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal ALLEMAGNE

fischerwerke

14 pages dont 3 annexes faisant partie intégrante de cette évaluation

Guide d'Agrément Technique Européen relatif aux « chevilles métalliques pour béton » ETAG 001 Partie 2 « Chevilles à expansion par vissage à couple contrôlé », Avril 2013, utilisé en tant que Document d'évaluation européen (EAD) selon l'Article 66 Paragraphe 3 du Règlement (UE) n°305/2011

Evaluation Technique Européenne ETA-07/0211

Page 2 de 14 | 19 Mai 2016

Traduction française par fischer

L'évaluation technique européenne est délivrée par l'organisme d'évaluation technique dans sa langue officielle. Les traductions de cette évaluation technique européenne dans d'autres langues doivent correspondre pleinement au document original et doivent être identifiées comme telles.

Cette évaluation ne peut être transmise, y compris par voie électronique, qu'en version intégrale. Une transmission partielle ne peut être réalisée qu'avec l'accord écrit de l'organisme d'évaluation à l'origine du document. Toute reproduction partielle doit être identifiée comme telle.

Cette évaluation technique européenne peut être retirée par l'organisme l'ayant délivrée, notamment après notification de la Commission sur la base de l'article 25, paragraphe 3 du règlement (UE) n°305/2011.

Evaluation Technique Européenne ETA-07/0211

Page 3 de 14 | 19 Mai 2016

Traduction française par fischer

Partie spécifique

1 Description technique du produit

Le goujon d'ancrage fischer FBN II et FBN II A4 est une cheville en acier électrozingué, acier galvanisé à chaud ou acier inoxydable qui, après mise en place dans le forage, est expansée par vissage à couple contrôlé.

Le produit et la description du produit sont visibles en Annexe A.

2 Spécification de l'utilisation prévue conformément au document d'évaluation européen applicable

Les performances du point 3 ne peuvent être considérées que si la cheville est utilisée conformément aux spécifications et aux conditions de l'annexe B.

Les méthodes d'essais et d'évaluation sur lesquelles repose cette évaluation technique européenne conduisent à l'hypothèse d'une durée de service minimale de la fixation de 50 ans. Les indications relatives à la durée de vie ne peuvent être interprétées comme une garantie donnée par le fabricant, mais ne doivent être considérées que comme un moyen de sélection du produit qui convient à la durée de vie attendue et économiquement raisonnable de l'ouvrage.

3 Performance du produit et référence aux méthodes d'évaluation utilisées

3.1 Résistance mécanique et stabilité (Exigence 1)

Caractéristique essentielle	Performance
Résistances caractéristiques aux charges de traction et de cisaillement dans le béton	Voir Annexes C 1 et C 2
Distances au bord et entraxes	Voir Annexes C 1 et C 2
Déplacements sous charges de traction et de cisaillement	Voir Annexe C 3

3.2 Sécurité en cas d'incendie (Exigence 2)

Caractéristique essentielle	Performance
Réaction au feu	Les ancrages satisfont les exigences pour la Classe A1
Résistance au feu	Performance non évaluée

3.3 Sécurité lors de l'utilisation (Exigence 4)

Les caractéristiques essentielles relatives à la sécurité lors de l'utilisation sont incluses dans les exigences essentielles résistance mécanique et stabilité.

4 Système appliqué pour l'évaluation et le contrôle de la constance des performances avec indication de la réglementation applicable

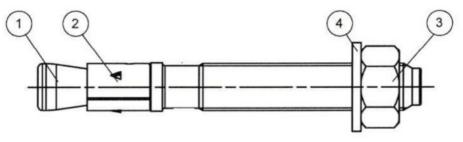
Conformément au Guide d'Agrément Technique Européen ETAG 001, Avril 2013, utilisé en tant que Document d'évaluation européen (EAD) selon l'Article 66 Paragraphe 3 du Règlement (UE) n°305/201, la réglementation européenne applicable est : [96/582/CE]. Le système suivant est à appliquer : 1

Evaluation Technique Européenne ETA-07/0211

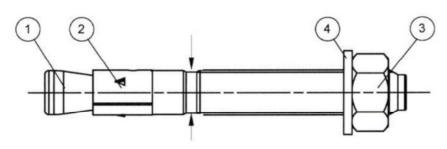
Traduction française par fischer

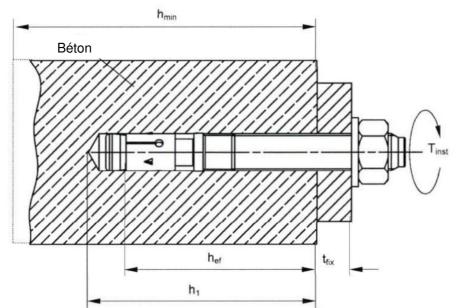
Page 4 de 14 | 19 Mai 2016

5 Eléments techniques nécessaires à la mise en place d'un système d'évaluation et de contrôle de la constance des performances conformément au document d'évaluation technique applicables


Les éléments techniques nécessaires à la mise en place d'un système d'évaluation et de contrôle de la constance des performances sont intégrés au plan de contrôle déposé au Deutsches Institut für Bautechnik.

Fait à Berlin le 19 Mai 2016 par Deutsches Institut für Bautechnik


Uwe Bendercertifié:Chef de DépartementTempel



Goujon version usinée :

- 1 Goujon d'ancrage (Version matricée ou usinée)
- 2 Bague d'expansion
- 3 Ecrou hexagonal
- 4 Rondelle

 $\begin{array}{ll} h_{\text{ef}} & \text{Profondeur d'ancrage effective} \\ t_{\text{fix}} & \text{Epaisseur de la pièce à fixer} \end{array}$

h₁ Profondeur de perçage

 h_{min} Epaisseur mini du support

t_{inst} Couple de serrage

Goujon d'ancrage fischer FBN II, FBN II A4

Description du produit

Implantation

Annexe A 1

8.06.01-66/16 Z23403.16

Traduction française par fischer

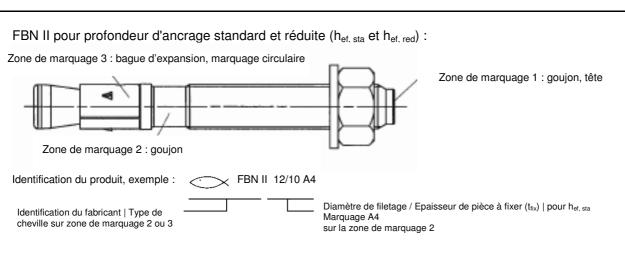
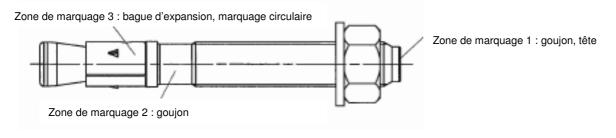



Tableau A1 : Code lettre sur zone de marquage 1 et épaisseur maxi admissible de la pièce à fixer t_{fix} :

Marquage		Α	В	С	D	Е	F	G	Н	-	K	L	М	N	0	Р	R	S	T	U	٧	W	Χ	Υ	Ζ
max t _{fix} pour h _{ef, sta}	M6-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M8, M10	15	20	25	30	35	40	45	50	55	60	70	80	90	100	110	130	150	170	190	210	260	310	360	410
max t _{fix} pour h _{ef. red}	M12, M16	20	25	30	35	40	45	50	55	60	65	75	85	95	105	115	135	155	175	195	215	265	315	365	415
0,100	M20	30	35	40	45	50	55	60	65	70	75	85	95	105	115	125	145	165	185	205	225	275	325	375	425

FBN II K uniquement pour profondeur d'ancrage réduite (hef, red) :

Identification du produit, exemple : FBN II 12/10 K A4

Identification du fabricant | Type de cheville sur zone de marquage 2 ou 3

Diamètre de filetage / Epaisseur de pièce à fixer (t_{fix}) Marquage K pour h_{ef,red} | Marquage A4 sur la zone de marquage 2

Tableau A2 : Code lettre sur zone de marquage 1 et épaisseur maxi admissible de la pièce à fixer t_{fix} :

Marguage		-A-	-R-	-C-	-D-	-F-	-F-	-G-	-H-	-l-	-K-	-l -	-M-	-N-	-0-	-P-	-R-	-S-	-T-	-11-	-V-	-W-	-X-	-Y-	-7-
max t _{fix}	M8-M20	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	120	140	160	180	200	250	300	350	400
pour h _{ef, red}	IVIO-IVIZO	5	10	2	20	23	5	00	Ť	7	50	0	70	5	3	100	120	1	100	100	40	3	5	330	400

Le marquage pour hef,red est le code lettre entre deux tirets.

Goujon d'ancrage fischer FBN II, FBN II A4	
Description du produit Type de chevilles	Annexe A 2

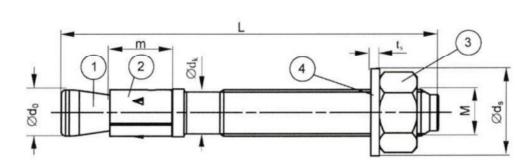


Tableau A3: Dimensions de la cheville [mm]

Partie	Décignation				FBN II, FI	BN II A4			
Partie	Désignation			M6	M8	M10	M12	M16	M20
		M	=	M6	M8	M10	M12	M16	M20
1	Goujon	$\emptyset d_0$	=	5,9	7,9	9,9	11,9	15,9	19,6
		\emptyset d _k	=	5,2	7,1	8,9	10,8	14,5	18,2
2	Bague	m	=	10	11,5	13,5	16,5	21,5	33,5
3	Ecrou hexagonal	SW	=	10	13	17	19	24	30
4	Rondelle	t _S	≥	1,0	1,4	1,8	2,3	2,7	2,7
4	Rondelle	Ø d _s	≥	11,5	15	19	23	29	36
Гисіос	a da mikaa k fiyay		≥	0	0	0	0	0	0
Epaiss	eur de pièce à fixer	t _{fix}	≤	200	200	250	300	400	500
Longue	our do la chavilla	L _{min}	-	45	56	71	86	120	139
Longueur de la cheville		L _{max}	-	245	261	316	396	520	654

Goujon d'ancrage fischer FBN II, FBN II A4

Description du produit
Dimensions de la cheville

Annexe A 3

Tableau A4 : Matières FBN II (électrozingué ≥ 5 μm, DIN EN ISO 4042: 2001-01)

Partie	Désignation	Matière
1	Goujon	Acier à matricer ou acier de décolletage Résistance nominale caractéristique de l'acier f _{uk} ≤ 1000 N/mm² Résistance nominale à l'allongement FBN II 8-16 f _{yk} ≥ 560 N/mm² ¹⁾
2	Bague	Feuillard laminé à froid, EN 10139:2013 2)
3	Ecrou hexagonal	Acier, classe de résistance min. 8, EN ISO 898-2:2012
4	Rondelle	Feuillard laminé à froid, EN 10139:2013

FBN II 6 $f_{yk} \ge 480 \text{ N/mm}^2$, FBN II 20 $f_{yk} \ge 520 \text{ N/mm}^2$

.Tableau A5 : Matières FBN II (galvanisé à chaud ≥ 50 μm, ISO 10684: 2004) 2)

Partie	Désignation	Matière
1	Goujon	Acier à matricer ou acier de décolletage Résistance nominale caractéristique de l'acier $f_{uk} \le 1000 \text{ N/mm}^2$ Résistance nominale à l'allongement FBN II 8-16 $f_{yk} \ge 560 \text{ N/mm}^2$
2	Bague	Acier inoxydable EN 10088:2014
3	Ecrou hexagonal	Acier, classe de résistance min. 8, EN ISO 898-2:2012
4	Rondelle	Feuillard laminé à froid, EN 10139:2013

¹⁾ FBN II 6 f_{yk} ≥ 480 N/mm², FBN II 20 f_{yk} ≥ 520 N/mm²

.Tableau A6: Matières FBN II A4

Partie	Désignation	Matière
1	Goujon	Acier inoxydable EN 10088:2014 Résistance nominale caractéristique de l'acier f _{uk} ≤ 1000 N/mm² Résistance nominale à l'allongement FBN II 8-20 f _{yk} ≥ 560 N/mm²
2	Bague	Acier inoxydable EN 10088:2014
3	Ecrou hexagonal	Acier inoxydable EN 10088:2014 ISO 3506-2:2009, classe de résistance mini. 70
4	Rondelle	Acier inoxydable EN 10088:2014

¹⁾ FBN II 6 fyk \geq 480 N/mm²

Goujon d'ancrage fischer FBN II, FBN II A4	
Description du produit Matières	Annexe A 4

Optionnel acier inoxydable EN 10088:2014

²⁾ Méthode alternative, shérardisé ≥ 50 µm EN 13811:2003

Traduction française par fischer

Spécifications de l'usage prévu

Goujon d	l'ancrage fischer FB	M6	M8	M10	M12	M16	M20					
O)	Acier –	électrozingué	✓									
ère	Aciei	galvanisé à chaud	- /									
Matière	Acier inoxydable	A4	✓									
Charges s	statiques et quasi stat	iques			/	,						
Profonde	ur d'ancrage réduite	- /										
Béton nor	n fissuré			/	•							

Support d'ancrage :

- Béton normal armé et non armé selon EN 206-1: 2000
- Classes de résistance C20/25 à C50/60 selon EN 206-1: 2000

Conditions d'utilisation (conditions environnementales) :

- Structures soumises à une ambiance intérieure sèche (FBN II (électrozingué / galvanisé à chaud), FBN II A4)
- Structures à l'extérieur (y compris les atmosphères industrielles et en bord de mer) et dans les locaux humides, s'il n'existe pas de conditions d'agressivités particulières (FBN II A4)
 - Remarque : Ces cas d'agressivités particulières correspondent par exemple à des immersions permanentes ou intermittentes d'eau de mer ou les zones d'éclaboussures d'eau de mer, l'atmosphère chlorée des piscines couvertes ou des atmosphères avec des pollutions chimiques extrêmes (p.ex. installation de désulfuration des fumées ou dans les tunnels routiers où l'on pratique le dégivrage).

Dimensionnement:

- Le dimensionnement des ancrages s'effectue sous la responsabilité d'un ingénieur expérimenté dans le domaine des ancrages et des ouvrages en béton
- Des plans et des notes de calculs vérifiables sont élaborés en tenant compte des charges devant être ancrées.
 La position de la cheville est à indiquer sur les plans (par exemple, position de la cheville par rapport aux armatures ou aux appuis, etc.)
- Le dimensionnement des ancrages sous actions statiques ou quasi statiques est réalisé selon :
 - ETAG 001, Annexe C, méthode de dimensionnement A, Edition Août 2010 ou
 - CEN/TS 1992-4 :2009, méthode de dimensionnement A.

Installation:

- Mise en place de la cheville réalisée par du personnel qualifié, sous le contrôle du responsable du chantier
- Forage au marteau perforateur ou avec foret aspirant selon Annexe B3
- En cas de forage défectueux : nouveau forage à une distance minimale de deux fois la profondeur du trou abandonné, ou à une distance plus petite si ce trou est comblé avec du mortier à haute résistance, et si sous des charges de cisaillement ou de traction oblique, il ne se situe pas dans la direction d'application de la charge

Goujon d'ancrage fischer FBN II, FBN II A4

Usage prévu
Spécifications

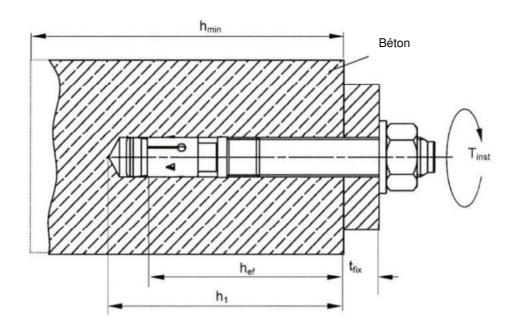

Annexe B 1

Tableau B1: Paramètres d'installation

Type de cheville / dimension Fl	BN II, FB	N II A4	М6	M8	M10	M12	M16	M20
Diamètre nominal du foret	d ₀ =	[mm]	6	8	10	12	16	20
Diamètre coupant du foret	d _{cut} ≤	[mm]	6,45	8,45	10,45	12,5	16,5	20,55
Profondeur d'ancrage effective	h _{ef} =	[mm]	30 ²⁾	40 (30 ^{1) 2)})	50 (40 ¹⁾)	65 (50 ¹⁾)	80 (65 ¹⁾)	105 (80 ¹⁾)
Profondeur de perçage dans le béton	h₁ ≥	[mm]	40	56 (46 ^{1) 2)})	68 (58 ¹⁾)	85 (70 ¹⁾)	104 (89 ¹⁾)	135 (110 ¹⁾)
Diamètre du trou de passage dans la pièce à fixer	d _f ≤	[mm]	7	9	12	14	18	22
Couple de serrage FBN II (électrozingué)	T _{inst} =	[Nm]	4	15	30	50	100	200
Couple de serrage FBN II (galvanisé à chaud)	T _{inst} =	[Nm]	-	15	30	40	70	200
Couple de serrage FBN II A4	T _{inst} =	[Nm]	4	10	20	35	80	150

¹⁾ Valeurs pour profondeur d'ancrage réduite

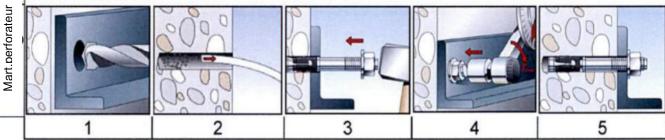
 h_{ef} = Profondeur d'ancrage effective t_{fix} = Epaisseur de la pièce à fixer h_1 = Profondeur de perçage h_{min} = Epaisseur du support béton

T_{inst} = Couple de serrage

Goujon d'ancrage fischer FBN II, FBN II A4	
Usage prévu Instructions pour l'installation	Annexe B 2

Utilisation limitée à l'ancrage d'éléments structurels statiquement indéterminés

Tableau B2: Epaisseur minimum des supports béton, entraxe minimum et distance au bord minimum


Тур	e de cheville / dimension FBN II, F	М6	M8	M10	M12	M16	M20		
	Profondeur d'ancrage effective	h _{ef} , sta	[mm]	30 ²⁾	40	50	65	80	105
eur ige	Epaisseur mini. du support	h _{mln}	[mm]	100	100	100	120	160	200
Profondeur d'ancrage standard	Entraxe mini.	S _{mln}	[mm]	40	40	50 (70 ¹⁾)	70	90 (120 ¹⁾)	120
P. b	Distance au bord mini.	C _{mln}	[mm]	40	40 (45 ¹⁾)	50 (55 ¹⁾)	70	90 (80 ¹⁾)	120
= 0	Profondeur d'ancrage effective	h _{ef} , red	[mm]	-	30 ²⁾	40	50	65	180
der rag	Epaisseur mini. du support	h _{min}	[mm]	-	100	100	100	120	160
Profondeur d'ancrage réduite	Entraxe mini.	S _{mln}	[mm]	-	40 (50 ¹⁾)	50	70	90	120 (140 ¹⁾)
	Distance au bord mini.	C _{mln}	[mm]	-	40 (45 ¹⁾)	80	100	120	120

Valeurs pour FBN II A4

Instructions pour l'installation

Foret creux

Continuer à l'étape 3, 4 et 5

N°	Description							
1	Réaliser le forage au marteau perforateur	Réaliser le forage avec un foret creux et un aspirateur						
2	Nettoyer le forage	-						
3	Insérer la cheville							
4	Expanser la cheville en appliquant le couple de serrage T _{inst}							
5	Installation terminée							

Fanal Surannasian	Types de forets	
Foret à percussion	B++44000000	
Foret creux aspirant	Ī	

Goujon d'ancrage fischer FBN II, FBN II A4	
Usage prévu	Annexe B 3
Entraxe et distance au bord minimum	
Instructions pour l'installation	

²⁾ Utilisation limitée à l'ancrage d'éléments structurels statiquement indéterminés

Tableau C1 : Valeurs caractéristiques de résistance à la traction pour profondeur d'ancrage standard et réduite sous action statique et quasi statique (méthode de dimensionnement A, selon ETAG 001, Annexe C ou méthode de dimensionnement A, selon CEN/TS 1992-4:2009)

Type de cheville / Dimension			M 6	M 8	M 10	M 12	M 16	M 20		
Rupture de l'acier pour profon	deur d'an	crane stan	_			IVI IZ	IVI TO	IVI ZU		
Résistance caract. FBN II	N _{Rk,s}	[kN]	8,3	16,5	27,2	41,6	77,9	107		
Coefficient partiel de sécurité	γ _{Ms} 1)	[-]	1,5	1,4	1,4	1,4	1,5	1,5		
Rupture de l'acier pour profon					.,0	.,0				
Résistance caract. FBN II A4	N _{Rk,s}	[kN]	10,6	16,5	27,2	41,6	78	111		
Coefficient partiel de sécurité	γ _{Ms}	[-]	1,5	1,4	1,4	1,4	1,4	1,5		
Rupture par extraction glissen			,	,	,	,		, -		
Résistance caract. C20/25	$N_{Rk,p}$	[kN]	6 ⁴⁾			_ 3)				
Rupture par extraction glissen		profondeu	r d'ancr	age rédu	uite FBN	II, FBN	II A4			
Résistance caract. C20/25	N _{Rk,p}	[kN]	-	6 ⁴⁾			- 3)			
	,p	C25/30		ı	1,	10				
		C30/37			1,	22				
Facteur d'accroissement pour		C35/45	1,34							
sistance caractéristique N _{Rk}	Ψc	C40/50	1,41							
		C45/55	1,48							
		C50/60	1,55							
Coefficient partiel de sécurité pour l'installation	$\gamma_2^{(1)} = \gamma^{(nst2)}$	[-]			1	,0				
Rupture par cône de béton et rup	ture par fe	ndage pour	profonde	ur d'ancr	age stan	dard FBN	II, FBN II	A 4		
Profondeur d'ancrage effective	h _{ef, sta}	[mm]	30 ⁴⁾	40	50	65	80	105		
Facteur pour béton non fissuré	k _{ucr} ²⁾	[-]		10,1						
Entraxe	S _{cr,N}	[mm]	3 h _{ef, sta}							
Distance au bord	C _{cr,N}	[mm]			1,5 ł	າ _{ef, sta}				
Entraxe (fendage)	S _{cr,sp}	[mm]	130 ⁴⁾	190	200	290	350	370		
Distance au bord (fendage)	C _{cr,sp}	[mm]	65 ⁴⁾	95	100	145	175	185		
Rupture par cône de béton et rup	ture par fe	ndage pour	profonde				, FBN II A	4		
Profondeur d'ancrage effective	h _{ef, red}	[mm]	-	30 ⁴⁾	40	50	65	80		
Facteur pour béton non fissuré	k _{ucr} ²⁾	[-]),1				
Entraxe	S _{cr,N}	[mm]				ef, red				
Distance au bord	C _{cr,N}	[mm]				n _{ef, red}				
Entraxe (fendage)	S _{cr,sp}	[mm]	-	190 ⁴⁾	200	290	350	370		
Distance au bord (fendage)	C _{cr,sp}	[mm]	-	95 ⁴⁾	100	145	175	185		

Paramètres pertinents pour dimensionnement selon ETAG 001, Annexe C

Goujon d'ancrage fischer FBN II, FBN II A4	
Performances Valeurs caractéristiques de résistance à la traction pour profondeurs d'ancrage standards et réduites	Annexe C 1

Paramètres pertinents pour dimensionnement selon CEN/TS 1992-4:2009

Mode de ruine par extraction/glissement non déterminant

⁴⁾ L'usage est restreint à l'ancrage d'éléments structurels statiquement indéterminés

Tableau C2: Valeurs caractéristiques de résistance au cisaillement pour profondeur d'ancrage standard et réduite sous action statique et quasi statique (méthode de dimensionnement A, selon ETAG 001, Annexe C ou méthode de dimensionnement A, selon CEN/TS 1992-4:2009)

Type de cheville / Dimension			М 6	M 8	M 10	M 12	M 16	M 20				
Rupture de l'acier sans bras de levier	pour prof	ondeur d	'ancrag	e stand	ard et r	éduite						
Résistance caractéristique FBN II	$V_{Rk,s}$	[kN]	6,0	13,3	21,0	31,3	55,1	67				
Rupture de l'acier sans bras de levier	pour prof	ondeur d	l'ancrag	e stand	ard et r	éduite						
Résistance caractéristique FBN II A4	$V_{Rk,s}$	[kN]	5,3	12,8	20,3	27,4	51	86				
Rupture de l'acier avec bras de levier		ondeur d	_	e stand	ard							
Moment de flexion caract. FBN II	$M^0_{Rk,s}$	[Nm]	9,4 ³⁾	26,2	52,3	91,6	232,2	422				
Rupture de l'acier avec bras de levier pour profondeur d'ancrage standard												
Moment de flexion caract. FBN II A4	$M^0_{Rk,s}$	[Nm]	8 ³⁾	26	52	85	216	454				
Rupture de l'acier avec bras de levier	•	ondeur d	'ancrag	e réduit	e							
Moment de flexion caract. FBN II	$M^0_{Rk,s}$	[Nm]	-	19,9 ³⁾	45,9	90,0	226,9	349				
Rupture de l'acier avec bras de levier		ondeur d	'ancrag		e							
Moment de flexion caract. FBN II A4	$M^0_{Rk,s}$	[Nm]	-	21 ³⁾	47	85	216	353				
Coefficient partiel de sécurité rupture de l'acier	γ _{Ms}	[-]			1,	25						
Facteur de ductilité	k ₂ ²⁾	[-]			1	,0						
Rupture du béton par effet de levier p	our profoi	ndeur d'a	ncrage	standar	d FBN	ll et FBI	N II A4					
Facteur k selon ETAG 001, Annexe C ou k_3 selon CEN/TS 1992-4	$k^{1)}=k_{(3)}^{2)}$	[-]	1,4 ³⁾	1,8	2,1	2,3	2,3	2,3				
Coefficient partiel de sécurité pour l'installation	$\gamma_2^{(1)} = \gamma^{(nst 2)}$	[-]			1	,0	•					
Rupture du béton par effet de levier p	our profoi	ndeur d'a	ncrage	réduite	FBN II	et FBN I	I A4					
Facteur k selon ETAG 001, Annexe C ou k ₃ selon CEN/TS 1992-4	$k^{1)}=k_{(3)}^{2)}$	[-]	-	1,8 3)	2,1	2,3	2,3	2,3				
Coefficient partiel de sécurité pour l'installation	$\gamma_2^{(1)} = \gamma_{\text{inst } 2)}$	[-]		•	1	,0	•					
Rupture du béton en bord de dalle po	ur profond	deur d'an	crage s	tandard	FBN II	et FBN	II A4					
Longueur d'ancrage effective	I _{f,sta}	[mm]	30 ³⁾	40	50	65	80	105				
Diamètre de la cheville	d _{nom}	[mm]	6	8	10	12	16	20				
Coefficient partiel de sécurité pour l'installation	$\gamma_2^{(1)} = \gamma^{(nst 2)}$	[-]	1,0									
Rupture du béton en bord de dalle po	ur profond	deur d'an	crage r		BN II et	FBN II	A 4					
Longueur d'ancrage effective	$I_{f,red}$	[mm]	-	30 ³⁾	40	50	65	80				
Diamètre de la cheville	d _{nom}	[mm]	-	8	10	12	16	20				
Coefficient partiel de sécurité pour l'installation	$\gamma_2^{(1)} = \gamma_{\text{inst } 2)}$	[-]			1	,0		1,0				

Paramètres pertinents pour dimensionnement selon ETAG 001, Annexe C

³⁾ L'usage est restreint à l'ancrage d'éléments structurels statiquement indéterminés

Goujon d'ancrage fischer FBN II, FBN II A4	
Performances Valeurs caractéristiques de résistance au cisaillement pour profondeurs d'ancrage standards et réduites	Annexe C 2

Paramètres pertinents pour dimensionnement selon CEN/TS 1992-4:2009

Tableau C3 : Déplacements sous charges de traction

Type de cheville / Dimensions FBN II (FBN II A4)			М 6	M 8	M 10	M 12	M 16	M 20	
Profondeur d'ancrage standard	h _{ef, sta}	[mm]	30	40	50	65	80	105	
Charge de traction C20/25	N	[kN]	2,8	6,1	8,5	12,6	17,2	25,8	
Déplacements	δ_{N0}	[mm]	1,9	0,6	0,9	1,5 (1,9 ¹⁾)	1,8	1,8 (2,0 ¹⁾)	
Deplacements	$\delta_{N\infty}$	[mm]	3,1 (2,7 ¹⁾)						
Profondeur d'ancrage réduite	h _{ef, red}	[mm]		30	40	50	65	80	
Charge de traction C20/25	N	[kN]	-	2,8	6,1	8,3	12,6	17,2	
Dánlacamenta	δ_{N0}	[mm]		0,4	0,7	0,7	0,9	1,0	
éplacements	$\delta_{N\infty}$	[mm]	1,6 (1,7 ¹⁾)						

Valeurs pour FBN II A4

Tableau C4 : Déplacements sous charges de cisaillement

Type de cheville / Dimensions FBN II et FBN II A4			М 6	М 8	M 10	M 12	M 16	M 20
Cisaillement FBN II	V	[kN]	3,4	7,6	12,0	17,9	31,5	38,2
Dánicomento EDN II	δ_{V0}	[mm]	0,7	1,5	1,6	2,0	3,0	2,6
Déplacements FBN II	$\delta_{V^{\infty}}$	[mm]	1,1	2,3	2,4	3,0	4,5	3,9
Cisaillement FBN II A4	V	[kN]	3,0	7,3	11,6	15,7	29,1	49,0
Dánlacomenta EDN II A4	δ_{V0}	[mm]	1,5	1,4	2,1	2,6	2,7	4,6
Déplacements FBN II A4	$\delta_{V^{\infty}}$	[mm]	2,3	2,2	3,2	3,9	4,1	7,0

Goujon d'ancrage fischer FBN II, FBN II A4	
Performances Déplacement sous charges de traction et de cisaillement	Annexe C 3